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Well known is the revolutionary idea of translating problems of geometry to algebra
by means of the use of co-ordinates: we are all familiar with such terms as Carte-
sian plane, Cartesian co-ordinates in honour of René Descartes (1596–1650), to whom
this idea is attributed. The manipulative power of algebra can thus be brought to
bear upon geometry.1 Not so well known is another equally revolutionary instance of
the introduction of algebra into geometry, due to Carl Friedrich Gauss (1777–1855),
dating from circa 1795, which lead to spectacular solutions of certain long stand-
ing problems of geometry (Can regular polygons be constructed? Can angles be tri-
sected?), and which illuminated certain other long standing problems (Can the circle
be squared?) thereby contributing to their eventual solution. This lecture is about
this second instance of the application of algebra to geometry.

Formulation of the problem. To start with, we are given two (distinct) points on
the Euclidean plane, a ruler, and a compass. We are allowed to construct points,
(straight) lines, and circles (or arcs thereof) from our initial data consisting of the two
given points, by means of the given tools (the ruler and compass), according to the
rules specified below. Points, lines, and circles thus constructed are termed construct-
ible.

• The two given points are by definition constructible.
• Using the ruler, we may construct the line through two constructible points.
• Using the compass, we may construct the circle (or arc thereof) with a construct-

ible point as centre and radius the distance between this point and another
constructible point.2
• Points obtained as intersections of either two lines, or a line and a circle, or

two circles thus constructed are themselves in turn defined to be constructible.
It is convenient to allow application of the adjective constructible to other objects that
are formed out of constructible points, lines, and circles: the line segment between
two constructible points is constructible; a triangle whose vertices are constructible
is constructible; an angle is constructible if it can be realized as the angle between
two constructible lines that meet; etc.

The big question now is:
(1) Which geometric objects are constructible?

1 And, conversely, algebraic equations can be interpreted as representing geometric shapes—the
loci of their solutions—whose properties reflect those of the equations.

2 You are NOT allowed to draw a circle of arbitrary radius.
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Before addressing (some versions of) this question, let us warm up by first giving a
more formal definition of the set of construcitble points and then making a few simple
constructions.

An alternative, formal definition of the set of constructible points. We define,
inductively, an increasing sequence P0 ⊆ P1 ⊆ P2 ⊆ P3 ⊆ . . . of sets of points in
the plane. The initial set P0 consists of just the original two points. Given Pi, the
succeeding member Pi+1 in the sequence is defined as follows. For every pair of points
in Pi, consider the line through these. For every ordered pair of points in Pi, consider
the circle with centre the first point and passing through the second. We define Pi+1

as the set of all the points of intersection of these lines and circles with one another
(of two lines, of a line with a cicle, or of two circles).

Clearly Pi+1 is finite and contains its predecessor Pi. The set of constructible points
may be defined, alternatively, as the union:3

(2) P := P0 ∪P1 ∪P2 ∪P3 ∪ · · ·
Here is a curious looking observation, which follows from the inductive definition
of Pi, and which we will actually use later:

Each Pi and so also P is closed under reflection in the line through
the original two points.(3)

Some simple constructions. Suppose that we are given two distinct constructible
points p and q. Let ` denote the line through these points. Then the following are
constructible (the familiar constructions work even with the constraint on our com-
pass that we cannot draw circles of arbitrary radii):

• `
• the perpendicular to ` at p (or q)

Given also a constructible point r not on `,
• the perpendicular to ` through r
• the parallel to ` through r
• the parallelogram of which pq and pr are two sides

Given a fourth constructible point s at a distance d from r,
• the circle with centre p and radius d

Note that this last item shows that we could exchange our compass for a more versa-
tile one without changing the game. To clarify this remark, suppose that you place the
vertices of our compass on points r and s. Can you now lift the compass off the plane,
preserving the distance d between the vertices, keep the metallic vertex at p, and draw
the resulting circle? While such a maneuvre is not allowed under our present rules,
allowing it would not get us any further in the long run: if we exchanged our compass
for a more versatile one that could perform this maneuvre, we would not get any more
constructible objects! While it might take more steps for us with our poorer compass
to get a point constructed than with the more versatile compass, constructibility or
its lack thereof remains unchanged.

3 Being a countable union of finite sets, the set P is countable. This implies that there are lots of
non-constructible points, there being uncountably many points in the Cartesian plane.
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Given two constructible lines ` and `′ that meet, we can construct:
• the line that bisects the angle between ` and `′.4

We can also transfer angles: that is, given further a constructible line `′′ and a construct-
ible point u on it, we can construct:

• the lines through u that are at the same angle to `′′ as ` and `′ to each other.
In particular, the sum of two constructible angles is constructible.

Constructible numbers. Let us now translate the notion of constructibility from
geometry to algebra. For this purpose, consider co-ordinates on the plane after the
usual fashion: each point on the plane is represented by an ordered pair (x, y) of Introducing

Cartesian
co-
ordinates

real numbers, the x- and the y-coordinates of the point. Let us suppose that the two
original points given to us are in positions (0, 0) and (1, 0).5 We may also identify the
points on the plane with complex numbers.6 We may then suppose that the original
two given points correspond to 0 and 1.

A real number a is defined to be constructible if the point (a, 0) on the real line (the x-
axis) is constructible. More generally, a complex number is defined to be constructible
if the corresponding point on the plane is constructible. Observe that the following
conditions are equivalent for a complex number z = x+ iy = reiθ:

• z is constructible;
• x and y are constructible numbers;
• the number r and the angle θ are constructible.

This seemingly innocuous notion of the constructibility of a number is in fact quite
powerful. Witness, for starters, that it opens up an entirely new range of thought:7

(4) Constructible numbers form a field closed under taking square roots.
Proof: (i) Let a be a non-zero constructible complex number. Then a and −a are the
points at which the line through 0 and a meets the circle with centre 0 that passes
through a. So −a is constructible.
(ii) Let a and b be constructible numbers. Then the parallelogram with the line seg-
ment joining 0 to a and that joining 0 to b as two of its sides has a + b as its fourth
vertex, so a+ b is constructible.
(iii) Let a = reiθ and b = r′eiθ

′ be two constructible numbers. Then the angle θ+θ′ being
the sum of two constructible angles is constructible. To show that ab is constructible,
it is therefore enough to show that rr′ is constructible. But the line through the origin
and the point (1, r) meets the line with equation x = r′ at the point (r′, rr′), so rr′ is
constructible.

4 For the lines to be constructible, we must in the first place have had two points apiece on each of
them, so the usual construction is possible.

5There is no loss of generality in this supposition as the reader may later convince herself.
6 Such an identification would have been inconceivable at the time of Descartes, for the notion of

a complex number was not yet discovered—invented, if you prefer—at his time. In fact, Gauss was
among the first to exploit this identification.

7A subset of the complex numbers is called a field if it contains 0, 1, and−1, is closed under addition,
under multiplication, and under division by a non-zero element of the subset.
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(iv) Let a = reiθ be a non-zero constructible number. Then r is a positive real construct-
ible number. The line joining the origin to the point (r, 1) meets the line with equation
x = 1 at the point (1, 1/r), so 1/r is constructible too. Thus a−1 = r−1e−iθ is construct-
ible.
(v) Let a = reiθ be a constructible number. Its square roots are

√
reiθ/2 and

√
rei(2π+θ)/2.

We’ve already seen that angles can be bisected, so, in order to show that the square
roots are constructible, it is enough to show that

√
r is constructible. The circle with

centre origin and radius r + 1 meets the line x = r − 1 at the points (r − 1, 2
√
r) and

(r − 1,−2
√
r), so

√
r is constructible. 2

As a corollary of the above result, we have:
If b and c are constructible numbers, then so are the roots
of the quadratic equation X2 + bX + c = 0.(5)

Constructibility or lack thereof of regular polygons. Let us now take up a par-
ticular version of our question (1), one which was a famous long standing open prob-
lem at the time of Gauss, namely:
(6) Which regular polygons are constructible?
What do we mean by the constructibility of a regular n-gon? It seems natural to take
it to mean that we can find n constructible points that, in some cyclical order, form the
vertices of a regular n-gon (never mind how big or small). But it is easy to see—given
the constructions that we have made above—that the question can equally well be
posed in any of the following equivalent ways:

• For which n can we construct the regular n-gon with centre origin and (1, 0) as
one of the vertices?
• For which n is the angle 2π/n constructible?
• For which n is the number e2πi/n constructible?

Since we can bisect angles, it is clear that:
(7) If the regular n-gon is constructible, so is the regular 2n-gon.
If m and n are coprime integers, then we can find integers a and b such that am+ bn =
1.8 Dividing by mn, we get a/n+b/m = 1/mn, so that (e2πi/m)a(e2πi/n)b = e2πi/mn. By (4),

8This follows from Euclid’s division algorithm for finding the GCD of two positive integers m and
n. Recall that the division algorithm constructs a finite sequence, defined inductively, of strictly de-
creasing positive integers as follows. If n = m, the sequence consists just of one element: n. If n 6= m,
assuming n > m without loss of generality, the first two terms in the sequence are n, m. Now suppose
that we have found two or more terms of the sequence, the last two of which are r and s. To find the
next term, find t, 0 ≤ t < s, such that r = sq + t (there is a unique such t). If t = 0, then the sequence
terminates at s. If t > 0, then we add it as the next element of the sequence: n, m, . . . , r, s, t. This
sequence terminates since it is strictly decreasing. Since every third or later term of the sequence is
expressed as an integer linear combination of the previous two—note t = r− qs from the definition of t
above—by successive back substitutions, we obtain the last term as an integral linear combination of
the integers n and m. This proves that the GCD divides the last term. Moreover, since the last term
divides the one before, by induction, it divides every preceding term, in particular m and n. So the last
term is in fact the GCD.
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if e2πi/m and e2πi/n are constructible, then so is e2πi/mn. In other words:
If for coprime integers m and n, the regular m-gon and the regular n-gon
are constructible, then so is the regular mn-gon.(8)

Let us now try to list the n for which the regular n-gon is constructible.

The equilateral triangle and square. Since e2πi/3 is at a distance 1 from both the 0
and −1, it is constructible.9 The unit circle—that with centre 0 and radius 1—and the
y-axis intersect at the points ±eiπ/2 = ±i, so the regular 4-gon is constructible.

The regular pentagon. The first non-trivial case therefore is n = 5. It was known for
a long time before Gauss that the regular pentagon is constructible. Let us now give
a proof of this fact following Gauss and using (5). Put ζ = e2πi/5. The constructibility
of ζ follows from that of ζ + ζ4, for ζ and ζ4 are the roots of X2 − (ζ + ζ4)X + 1 = 0.
Now consider ζ + ζ4 and ζ2 + ζ3. Their sum is ζ + ζ2 + ζ3 + ζ4 = −1 and their product
is also ζ3 + ζ + ζ4 + ζ2 = −1.10 Thus they are the roots of X2 +X − 1 = 0, and therefore
constructible, which finishes our proof of the constructibility of the regular pentagon.

The state of the art at the time of Gauss. Putting together the constructibility of the
regular 3-, 4-, and 5-gons with observations (7) and (8), we conclude that the regular
n-gon is constructible if n has one of the following forms:

2m, 2m3, 2m5, 2m15 for m a non-negative integer
Such was the state of knowledge at the time of Gauss. For any value of n other than
those above, namely, 7, 9, 11, 13, 14, 17, 18, 19, 21, 22, 23, 25, . . . , it was not known
whether or not the regular n-gon is constructible.

Gauss’s theorem. As a teenager, Gauss succeeded in constructing the regular 17-gon.
In fact, he settled problem (6) for good, by proving:

The regular n-gon is constructible if and only if the number φ(n) of
positive integers not greater than and coprime to n is a power of 2.(9)

The function φ(n) in the theorem above is called the Euler totient function. To unravel
the condition that it be a power of 2, recall its following properties:

• it is multiplicative: that is φ(mn) = φ(m)φ(n) if m and n are coprime.
• for p a prime and r a positive integer, φ(pr) = (p− 1)pr−1.

Let n = 2rpr11 · · · p
rk
k be the prime factorization of m where r ≥ 0; p1, . . . , pk are distinct

odd primes; and r1, . . . , rk positive integers. Then, by the properties above of φ, we get
φ(n) = 2r−1 · (p1 − 1)pr1−11 · . . . · (pk − 1)prk−1k .

For φ(n) to be a power of 2, it is therefore necessary and sufficient that each of r1,
. . . , rk equal 1, each of p1 − 1, . . . , pk − 1 be a power of 2. Gauss’s theorem could thus
equivalently be stated as follows:

9A point is constructible if it is at a constructible distance d from a constructible point p and a
constructible distance d′ from a second point p′ 6= p: for it is then one of the points of the intersection
of the constructible circles with centre p and radius d and with centre p′ and radius d′.

10Since ζ is a root of X5 − 1 which factors as (X − 1)(X4 +X3 +X2 +X + 1), we obtain (ζ − 1)(ζ4 +
ζ3 + ζ2 + ζ + 1) = 0. Evidently ζ − 1 6= 0, and so ζ4 + ζ3 + ζ2 + ζ + 1 = 0.
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The regular n-gon is constructible if and only if the factorization of n
into primes has the following form

n = 2r · p1 · . . . · pk
where r is a non-negative integer, and p1, . . . , pr are distinct odd primes
such that p1 − 1, . . . , pr − 1 are all powers of 2 (r could be 0, that is, n
could be just a power of 2).11

For example, the full list of n up to 100 for which the regular n-gon is constructible
reads as follows:12

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 51, 60, 64, 68, 80, 85, 96

Before turning to the proof of the theorem, let us note one important consequence of
it.

Impossibility of trisecting angles. Gauss’s theorem tells us that the regular 18-gon is
not constructible, which means precisely that the angle 2πi/18 (= 20◦) is not construct-
ible. So we cannot trisect the angle 2πi/6 (= 60◦) (not within the rules of our game),
settling another long standing question of geometry from antiquity.

Proof of Gauss’s theorem. The crucial albeit simple observation is the following
complement to (4):13

The field of constructible numbers equals the smallest subfield
of the complex numbers closed under taking square roots.(10)

Let K denote the latter subfield of the complex numbers. By (4), the field P of
constructible numbers contains K. To show P ⊆ K, it is enough, by the definition (2)
of P, to show that each Pi ⊆ K, which we do my induction. Since P0 = {0, 1}, it is
clearly contained in K. Now suppose that Pi ⊆ K for some i. For z in Pi, its conjugate
z̄ is also in Pi by (3), so (z + z̄)/2 and (z − z̄)/2i , the real and imaginary parts of z
belong to K (observe that i belongs to K, it being a square root of −1). One can thus
write an equation with coefficients in K for any line through two points in Pi; and the
same for any circle with centre at one of the points in Pi and passing through another
point of Pi. Solving for the co-ordinates of the points of intersection of such lines and
circles with one another (of two lines, of a line with a circle, or of two circles) involves
only the operation of extracting square root—while invoking the familiar formula for
the roots of a quadratic equation—in addition to the field operations (of addition, sub-
raction, multiplication, and division by non-zero elements). Since K is closed under
taking square roots, the co-ordinates of the points of Pi+1 belong to K. Since i belongs
to K, the points of Pi+1 (thought of as complex numbers) also belong to K, and (10) is
proved.

11 If 2k + 1 is a prime, then k itself is a power of 2: if h is an odd integer, then the polynomial Xh + 1
has −1 as a root and so X + 1 as a factor; this means that if k = hj with h odd, then 2hj + 1 = (2j)h + 1
has 2j + 1 as a factor.

12If the presence of 1 and 2 on the list is causing discomfort, think of it as just asserting the con-
structibility of the numbers e2πi/1 = 1 and e2πi/2 = −1.

13 Since the intersection of an arbitrary collection of subfields is a subfield, it makes sense to talk of
such a smallest subfield as in the following statement.
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Further preparation for the proof. Consider the inductively defined increasing se-
quence K0 ⊆ K1 ⊆ K2 ⊆ . . . of subfields of the complex numbers, where K0 is the
field Q, and, for each i, Ki+1 is the smallest field containing Ki and the square roots
of all elements of Ki. The smallest subfield K of the complex numbers closed under
taking square roots is then the union K0 ∪K1 ∪K2 ∪ .... Using this description of K,
we now show:
(11) any finite extension F of Q contained in K has degree a power of 2 over Q.
Since such an F is contained in some Ki, it is sufficient to prove the statement with
Ki in place of K (i arbitrary). We do this by induction on i. Since K0 = Q, the case
i = 0 is obvious. Now suppose we know the statement for Ki (induction hypothesis)
and suppose that F is contained in Ki+1. Set F ′ := F ∩ Ki. By enlarging F (and
consequently also F ′) if necessary, we may assume that there exist a1, a2, . . . , ar, such
that a21, a22, . . . , a2r belong to F ′ and F = F ′[a1, . . . , ar].

By the induction hypothesis, F ′ := F ∩ Ki has degree a power of 2 over Q. Since
[F : Q] = [F : F ′][F ′ : Q], it is enough to show that [F : F ′] is a power of 2. Consider

F ′ ⊆ F ′[a1] ⊆ F ′[a1, a2] ⊆ . . . ⊆ F ′[a1, . . . , ar−1] ⊆ F ′[a1, . . . , ar] = F

Since a2j belongs to F ′ for 1 ≤ j ≤ r, the degree of every extension in the above chain
over the previous one is either 1 or 2. Thus F has degree a power of 2 over F ′ and we
are done proving (11).

A complement. We will now show the following complement to (11):14

(12) Any finite Galois extension of Q of degree a power of 2 is contained in K.
Let F be a finite Galois extension of Q of degree 2i. We will show, by induction, that
F ⊆ Ki. For i = 0 we have F = Q and K0 = Q. Now let i > 1. Recall that a group of
order pi (where p is prime) has non-trivial centre. Let H be a subgroup of order 2 of
the Galois group of F over Q that is contained in the centre. Then H is normal and its
fixed field F ′ is a Galois extension of degree 2i−1 over Q. By induction, we know that
F ′ ⊆ Ki−1. To show that F ⊆ Ki it thus suffices (since [F : F ′] = 2) to observe that:
(13) Any degree 2 extension is obtained by adjoining a square root
Let α be an element of the extension field not in the base field. Let α2 + bα + c = 0
with b and c in the base field. By the usual procedure of “completion of squares”, we
see that (α + b/2)2 = b2/4− c, so that the extension is obtained by adjoining a square
root of b2/4− c.

Proof of (9). Put ζ := e2πi/n., Let Q[ζ] be the smallest field containing ζ. As is well
known, Q[ζ] is a finite Galois extension of degree φ(n) over Q.

Suppose first that ζ is constructible. Then, by (10), it belongs to K, so Q[ζ] is a finite
extension of Q contained in K. By (11), φ(n) = [Q[ζ] : Q] is a power of 2.

Conversely, suppose φ(n) is a power of 2. Then, by (12), Q[ζ] is contained in K.
By (10), ζ is constructible. 2

14Suggestion to the reader who is not familiar with Galois theory: if you accept as blackboxes the
assertion (12) and the fact that Q[e2πi/n] is a Galois extension of degree φ(n) of Q, the proof becomes
more accessible, for the rest of it uses only elementary field theory.
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Impossibility of squaring the circle. Is a square with area equal to the unit cir-
cle constructible? This question too was for a long time outstanding at the time of
Gauss. Since the area of the unit square is π, the side of such a square would be
of length

√
π. So the question is equivalent to asking if

√
π is constructible. As was

shown by Lindemann in 1882, π is transcendental, so definitely not constructible (so
also

√
π).15

EXERCISES

(1) Show that, for coprime positive integersm and n, the regularmn-gon is construct-
ible if the regular m-gon and the regular n-gon are constructible.

(2) A yard stick has inch markings (one yard = 36 inches). It is also divided into
hundred equal parts by another set of markings. What is the minimum posi-
tive distance that can be measured with such a stick?

(3) A prime p is called a Fermat prime if p − 1 is a power of 2. Show that any
Fermat prime p is of the form 22k + 1.

(4) Show that the following two conditions are equivalent for a positive integer m:
(a) φ(m) is a power of 2 (where φ(m) denotes the number of positive integers

at most m that are coprime to m).
(b) m = 2r · p1 · · · · · pk, where p1, . . . , pk are distinct odd Fermat primes.

(5) Prove from first principles that the regular 17-gon is constructible.
(6) Prove or disprove: 3 is a generator of the multiplicative group of units modulo

any Fermat prime.

15I do not know if it was known before Lindemann that π is not constructible: taken at face value,
the non-constructibility seems much weaker than the transcendence.
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